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Inductive Posts and Diaphragms of
Arbitrary Shape and Number in a

Rectangular Waveguide

HESHAM AUDA, STUDENT MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

Abstract—Consider a finite number of posts and/or diaphragms located

close to each other in a rectangular wavegnide. These are assumed to be
perfectly conducting, of arbitrary shape, and uniform in the direction

paraflel to the narrow side of the wavegnide, i.e., of the inductive type, The

solution of the problem involves determining the network describing the

effect of the posts and diaphragms on the waveguide dominant mode. A
moment procedure is devised and applied to a set of test problems. The

simplicity and generality of the procedure, together with its excellent

performance, as indicated by the results obtained, clearly shows that it is a

powerful tool worth using.

I. INTRODUCTION

A COMMONLY USED building block in microwave

filter design consists of a configuration of closely

spaced posts or diaphragms in a rectangular waveguide. A

knowledge of the characteristics of such a block is required

before a synthesis procedure can be applied. In particular,

the effect of the block on the dominant waveguide mode

must be accurately described, and, from an engineering

perspective, descriptions employing networks of lumped

elements are preferred. In this paper, the class of inductive

posts is considered, and its network description is being

sought. (To avoid unnecessary writing, posts, hereafter, are

meant to be both of zero thickness, i.e., diaphragms, as well

as of finite thickness.) These posts are assumed to be

perfectly conducting, of arbitrary cross section, and uni-

form in the direction parallel to the narrow side of the

waveguide. The problem considered is depicted in Fig. 1.
The analysis of posts in a waveguide is an important

problem in microwave theory, and a large body of litera-

ture exists on it. However, many of the available solutions

have shortcomings. The number of posts considered is

usually one, and the extension to more than one post is not

easy to obtain. Also, the application of these methods is

largely restricted to specific posts like circular posts,

windows and diaphragms coincident with a waveguide

cross section, etc., or those that may be approximated as

such. An account of some of these methods can be found

in texts [1, ch. 8], [2, chs. 5, 6]. Sub sectional moment

methods, on the other hand, provide a means by which

these solutions can be made more general. For example, a
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Fig. 1. p inductive posts in a waveguide.

large class of posts, including the ones described above,

can be handled without difficulty. As a result, a general

computer code which allows a systematic application of the

procedure can be written. It is the purpose of this paper to

demonstrate such a solution.

The moment procedure is quite straightforward. First,

each post is approximated by a finite number of strips,

each of which carries a constant current whose value is to

be determined. The Green’s function for the TEHO to z

modes is then used to express the field produced by these

currents. For an incident TEIO to z mode traveling along

the waveguide axis in either direction, the total tangential

electric field must vanish on each post. Satisfaction of this

condition along a line in the direction of each strip leads to

two systems of equations, one for each excitation, It is

worthy of note that in the two cases the matrix is the same,

whereas the right-hand side vectors are complex con-

jugates. The solution of these equations determines the

current induced on each post for each excitation. The
reflection and transmission coefficients of the waveguide

dominant mode are then evaluated using the induced cur-

rents to set up the scattering matrix of the posts. The

impedance matrix is then determined, and readily realized

by a T-network of lumped elements, using standard micro-
wave network theory.

This paper is organized as follows. The moment proce-

dure is presented in Section II. The evaluation of the

matrix elements is considered in Section 111. Section IV

presents some of the results obtained by applying the
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procedure to a few selected problems. Final remarks are

given in the discussion in Section V.

II. BASIC FORMULATION

Let P1, P2,. . . . Pp be inductive posts located in a rect-

angular waveguide whose axis is in the z direction. These

posts are assumed to be perfectly conducting, of arbitrary

cross section, and uniform along the y-axis.

Let a TEIO to z mode of unit amplitude be incident on

the posts from the left. The incident electric field has only

a y-component given by

()E: = sin :x e-Y’z (1)

where

/( )
2

Yl=j#= ~ –K2.
10 a

(2)

Here K = 2T/A = CO+ is the wavenumber of the medium

filling the waveguide, and A is its wavelength. This medium

is assumed linear, homogeneous, isotropic, and dissipation

free, and is therefore characterized by the real scalar per-

meability y p and the real scalar permittivity c. Furthermore,

it is assumed that a < A < 2a, so that only the dominant

mode can propagate in the waveguide.

Since each post is uniform along the y-axis, and since

the incident field has only a y-component electric field that

does not vary with y, the field scattered from the posts

must have only a y-component electric field that does not

vary with y. Thus, the only higher order mode excited are

TE~O to z modes, since these are the only modes having

only an Ev component that does not vary with y, Conse-

quently, the current induced on each post has only a

y-component that does not vary with y. The scattered field

can be evaluated in terms of these currents by using the

Green’s function for TE~o to z modes [1, sec. 5-6]. (The

problem is basically a two-dimensional scalar one, and it is

assumed, hereafter, that all source and measurement points

are located in some plane y = constant within the wave-

guide.) The scattered field is then given by

where

m ‘in(%x)sin(%’)e-’n’z-z”
G(x, zlx’, z’)= –~ ~

~=1 I’n

(O<x<a) (4)

/( )
2

Y.= y –~2 (5)

dl’=/(dx’)2+(dz’)2 . (6)

In (3), J’ is the current induced on the tth post, and the

integral is taken along each boundary Cl of the tth post

cross section, 1< ts p. Since each post is perfectly con-

Fig. 2. Each C*, 1< t <p, approximated by a polygon X’.

ducting, we must have

E;+ J7; =0 on ~C’
*=1

(7)

where U denotes the union of sets. This is an integral

equation for the induced currents.

An exact solution of (7) can rarely be obtained. An

approximate solution can be obtained by replacing each

Ct,l < t <p, by a polygon Y = {S;, S~, ”””, SJr} (see Fig.
2), each segment of which carries a constant current whose

value is to be determined. The integral equation then

becomes

1

()sin :x e-Y’2 + $ ~ a~U~~,G(x, zIx’, z’) all’= O,
t=lu=l 14

P
(x, Z)C U ~’. (8)

*=1

In (8), a{,, is the unknown constant current on the uth-..
segment of Xf, S:, along which the integral is taken,
< g’,1< t< p, Satisfying (8) at U f=lMr, where

1< 2.4

}
I<u<g’ (9)

and (x;, +l, Z;, + ~) = (xi, z;) for any post t of finite thick-
ness, we obtain the system of equations

where ~ is a p by p block matrix whose rs th block is the

g’ by gs matrix

B’s= [R] “ [-~,G(~:+(l/2)j z~+(l/2)lx’3z’) d~’]
u

(11)

and ?I and PI are the p segment vectors whose s th and

r th segments are, respectively, the g“ by 1 and g’ by 1

vectors

[ (:XL+(1,2))W;2)]. (13)
F;= [@<u] = sin

Solution of the system of equations (10) determines the

current induced on each segment.
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This approximate solution is a moment solution with

pulses used for current expansion and a point-matching

procedure [3, sec. 1-5]. The higher order modes excited are

evanescent, i.e., decay exponentially with distance from the

posts. Thus, at distances sufficiently far from the posts,

only the dominant mode propagates in the waveguide. The

reflection coefficient of the dominant mode rl, evaluated

at z = O, can be determined from (4) and (8) as

The transmission coefficient of the dominant mode,

evaluated at z = O, is then given by

The choice of the reference plane L at z = O is only a

matter of convenience.

In view of the evanescing nature of the higher order

modes, the posts can be described by their effect on the

dominant mode. To do this, let a TEIO to z mode of unit

amplitude be incident on the posts from the right. This

mode has only a y-component electric field, which is now

given by

(16)

Let each C’, 1< t<p, be approximated in exactly the

same way as done previously, i.e., by the same polygon

2’={s; ,s; ,. ””,S;, }. Each segment is assumed to carry

an unknown constant current ajU. Using the Green’s func-

tion G(,G zIx’, z’) to express the scattered field E;, then

point matching E;+ E; to zero at U f.lkf’, where M’ is

the point set defined by (10), we obtain the system of

equations
=+
Z12 = 72. (17)

Here -~ is the p by p block matrix given by (11), and ~z

and Vz are the p segment vectors whose s th and r th

segments are the g’ by 1 and g’ by 1 vectors

(18)

respectively, Solution of the system of equations (17) de-

termines the current induced on each segment. The reflec-
tion and transmission coefficients of the dominant mode,

evaluated at z = O, in this case are given by

The effect of the posts on the dominant mode can then

be described by the scattering matrix [4, sec. 5-14]

[1rl T
S=T r?

12

(22)

● %2-212 ●

c 10 c 10

● ●

1- L

Fig. 3. A two-port network corresponding to the matrix ~ in (27).

For a reciprocal medium, T1 and Tz are necessarily equal.

In the Galerkin case with pulses used for both current

expansi~n and testing, it is easy to show that the moment

matrix Z is symmetric, and T1 and T2 are given by

(23)

(24)

where the superscript T denotes vector transpose, Conse-

quently, T1 and T2 are equal. This need not be the case

when point matching is used to satisfy the boundary condi-

tions. However, the modulus of the difference in transmis-

sion coefficients is small so that an average transmission

coefficient may conveniently be defined. To proceed fur-

ther, define the average transmission coefficient

The scattering matrix of the posts then

.[ 1T
s=:;.

av 2

The posts impedance matrix is given

(25)

becomes

(26)

by
/

Z=~lo(U+S)(U-S)-’= [:: ::] (27)

where {10 = j~p/ yl is the characteristic impedance of the

TEIO to z mode, and U is the identity matrix. For a lossless

medium and perfectly conducting posts, the elements of Z

are pure imaginary [4, sec. 5-12]. However, due to the

approximations involved in the numerical solution, the

imaginary nature of Z need not be preserved (S need not

be unitary). The real part of Z is of small norm, neverthe-

less, so that it is reasonable to consider only the imaginary

part of Z. The equivalent network corresponding to (27) is

shown in Fig. 3.

III. EVALUATION OF MATRIX ELEMENTS

The construction of the moment matrix ~ in (10) and

(17), constitutes a large portion of the work involved in the

moment solution. An efficient evaluation of the matrix

elements is therefore neces>ary for the success of the solu-

tion. A typical element of Z is given by the integral

‘~$G(xu,zulx’,z’) dl’
u

where

(x”, z.) = (%+(1/2) ~ 2;+(1/2)) “

The first step is to express the dynamic Green’s function

G(xU,, zJx’, z’) in terms of the corresponding static
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TABLE I
THE PARAMETERS OF AN EIGHT-POINT GAUSS-RADAU

QUADRATURE RULE

I

1 2 3 4 5 6 7 8

Pi O.o 0.06412993 0.20414991. 0.39s35039 1.P4 1-P3 1-P2 I-pl

0.03571428 0.21070422 0.34112270 0.41245880 qi q~ qz q
L

Green’s function, whose analytic form is known, plus cor-

rection terms. The integration is then carried out numeri-

cally.

Put

(29)

Then

– G(xu/, ZO,IX’,Z‘)=%sin(:x)sin(:x’)
~G’ (30)~-j(~/a)lzu,–z’lB1 + J

where

G,= ~ sin(:x.)sin(%x’)e-,m/a)lzu,_z/,B”
~=z &

‘-(au) psin ‘x , sin 2x’ e–(’’la)lzo’-l’l – ZGsl + G“,

(31)

In (31), G“ is the static Green’s function

~=1 n ‘(%)sin(%’),)- ‘p ~ Asi(7 f(xo/, ZU,IX’, Z ~

- e-(nn/a)lzo’-z’l (32)

which can be obtained by setting K equal to zero and

dropping the ja factor in (4), whereas G“ is the correction

series

“(e–(~/a)lzu, –z’l&

& - )e-(nm’:)’z”’-z” . (33]

The series in (32) is readily summed (see Appendix A) to

give

H–~&+e log
1 – ~-(~/a)(jlxof+x’l+ lzo-z’l)

P 1 – e-(r/a)(Ax”.-x’l+ lz”-z’D )1
(34)

where log is meant to be the natural logarithm. The correc-

tion series G“ is dominated by an exponentially conver-

gent series of positive monotonically decreasing terms (see

Appendix B), an{d may therefore be summed directly at a

very modest cost. Combining (30), (31), and (34), we obtain

a new form of G

–G(xo/, zu,lx’, # )= ~sin(gx.)sin(~x’)a a

. e–(j~/a)lzo, –z’l&

H++Re log
1 _ e–(~/~)(jlx.+x’l+ lzuf-2’D

II )

+G” .
1 – e-(~/a)(Ax,l,-x’[ +lz.f-2’D

(35)

The integration is now carried out numerically with G

given by (35). Apart from juGsf, the integration of the
terms composing G causes no difficulty, and any quadra-

ture rule can be used. Thus, each integral is computed as

where

l;=l/(x:+l –x; )2+(z;+1–z; )2. (37)

In (36), N is the order of the rule, the q, are its coeffi-

cients, and the pi determine the location of its abscissas. T
stands for any term in (35) except j@G’*. Table I shows the

4i md p,of an eight-point Gauss-R&dau rule [5].
For any off-diagonal element of Z, -the jtiGS~ term can

~e integrated Viii (36). When evaluating the diagonals of

~, jaGs’ offers a logarit@ic singularity at (xo,, Zu,) that

requires particular attention. In a very small neighborhood

((xu, – 8X,’Z0. –’d=), (xU, + 8X, Zu, + 8=)), 8X,8=> O, about

(x.), Zu,) the following approximation is valid:

[ )]Re log(l – e-(w/~)(Jlx.-x’l+lz.-lJIJ -

[(Re log :( jlxo, – x’1+ IZO,– 2’1)] =1O+P) (38)

where

P:=/(x”/-x’)’+( zU/-z’)’. (39)

The integral of the singular function jwGs’ can then be

written as

JjuGs’ dl’ =
s;

+flog(;,)d,
u

J(juG” +~log
( ))

;p dl’

=ikw-’)

+ J(
,-s’

jtiGJ[+~log(~P))dz. (40)
-u
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Fig. 5. The convergence behavior of the moment procedure for the
symmetrical thin window (a/A = 0.8, d\a = 0.5).

The integral on the right-hand side of (40) has no singular-

ity at (x.), z.,), and can be computed using (36).

IV. TESTING THE MOMENT SOLUTION

The solution procedure presented has been translated

into a computer program. To test the moment solution, the

computer program is run for a few selected problems.

Some of these problems are of practical importance, and

have been treated in the literature. In particular, the prob-
lems of the symmetrical thin window, the asymmetrical

thin window, the circular post, and the triple circular post

are considered.
The elements of the scattering matrix and the reactance

of the equivalent T-network are basically the parameters to

be computed. In each case, the resulting equivalent net-

work is compared to that given in the Waveguide Handbook

(WGHB) [6]. The equivalent network of the triple circular

post is tested against measured data. A complete assms-
ment of the performance of the moment procedure should

also consider the (Frobenius) norm of the real part of Z

and the modulus of the difference in transmission coeffi-

cients. These two numbers are computed in all program

runs. and are usuallv found to be 0(10 – 8\ or better.

i
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Fig. 7. The convergence behavior of the moment procedure for the
asymmetrical thin window (a\A = 0.8, d\a = 0.5).
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Occasionally, the latter gets to be 0(10-‘). The problems

considered, and some of the obtained results are shown in

Figs. 4-11.

Some general remarks can be drawn from the results

obtained.

In all the cases, the convergence for the inductive reac-

tance X. is monotonic and from above, as can be readily

seen from the set of figures. This can be shown for the

Galerkin procedure, and is true as an approximation for

the present procedure. Thus, the true value of X. can be

considered the greatest lower bound (infimum) of its com-
puted values, and the difference margin is actually less

than that indicated in the figures. The computed reac-

tance, nevertheless, agree well with the WGHB data, with

only a few strips needed to approximate even large posts.

Perhaps the most interesting observation can be drawn

by examining Fig. 8 for the centered circular post. For
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Fig. 11. Measured i~d computed reactance of the symmetrical triple
circular post (dianwter = 0.089”) in a WR-90 waveguide. (16 strips are
used to approximate each post.)

large posts (d/’a > 0.25), X~AIO /2aJ10 is no longer

frequency independent, as is the case with small posts

(d/a < 0.25), but rather branches out. Such a behavior has

been confirmed by Leviatan et al. [7]. Figs. 10-11 for the

symmetrical tripl~e circular post display yet another set of

almost frequency-independent characteristics. This is not

surprising, however, since this configuration cancels out

the first six higher order modes [2, sec. 5-1.3].

V. DISCUSSION

In this paper,, a subsectional point-matching moment

procedure has been applied to multiple posts of the induc-

tive type Iocatedl in a rectangular waveguide. These posts

are metallic, of arbitrary cross section, and uniform in the

direction parallei to the narrow side of the waveguide,

In the procedure, the current induced on each post is

expanded in terms of pulses. Functions other than pulses

could be used, but then the integrals in the moment matrix

would be more (complicated. Experience has shown that a

substantial part (of the total work involved in the solution is

done in constructing the moment matrix, A pulse represen-

tation of the current, with point matching to satisfy the

boundary conditions, is used so as to render the.procedure

economical. However, this has been very successful, as is

evident by the performance of the procedure.

The moment procedure can also be applied, with due

changes, to other classes of posts. For instance, only few

changes are needed so that the procedure may apply to the

dual class of capacitive posts, i.e., posts that are metallic, of
arbitrary cross section, and uniform in the direction paral-

lel to the broad side of the waveguide. The class of dielec-

tric posts in the inductive, or capacitive, position may also

be handled using the moment procedure, but major revi-

sions will have to be made. These cases are currently being

considered.
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APPENDIX A

Consider the static Green’s function

– ;G$’(xu,, Zu+t’, Z’)

Since

i%=:o’n(rf Gc,lql <l) (A2)

and the series in (A2) is uniformly convergent for O < Iq I <

ltl <1, a term-by-term integration can be carried out [8,

sec. 5-4], giving

Putting ~ equal to e-( ’’/a)(~lxx’’- x’l+zz[)-z’[) and

e - (r/u)( jlx. + X’I + IZ.- z’1) in (A3), then using the results in

(Al), the static Green’s function reads

—;G’’(xu,, ZU.IX’,Z’)

H=~Re log
1 – ~-(~/a)(jlx.+x’l+ lzu-z’l)

1- ~-(~/aXjlxu-x’\+ 120-z’1)
11

(A4)

as asserted.

APPENDIX B

Consider the correction series

where

Clearly

~=, n E%)sin(%x’)Gtf= ~ ~ sin

~–(7r/a)lzo–z’@H e–(m7/a)p.f-z’l

an =
i% - n

(Bl)

(B2)

(B3)

(B4)

fL~)n - (IP ~ THE SHADED ARFA

‘“/
~-m+llz

‘-L

, .-/%’
.f -

b“. [ - Q.+ ‘-~-B& ,<On$THE HATCHEDAREA

t
an+, ___ ~.nz

_--——. + ~

;12”,.2’[

Fig. 12. Pictorial illustration of the procedure in the Appendix.

Put

e–(v’a)l%-z’lp(f)
a(t) =

~–(f~/a)lZo,–Z’l

/3(t) - ~

F- ‘t”)/l)(t)= t -(x)
f(z, t)= e-~(’) –e-’z.

Then

a(t) =~~a)i,u _=,{(z, t) dz.

(B5)

(B6)

(B7)

(B8)

Since t > ~(t) for all t>2, then a(t)> O for all t>2, and

certainly so is a., n = 2,3, ” “” .

That {an } is a monotonically decreasing sequence fol-

lows from its positiveness. Since ~ and d/i3tf are continu-

ous for t>2 and for all z > (m/a) Izu, – z ‘], and the in-

tegrals

converge uniformly for all t>2, then [9, sec. 7-5]

$z(t)=/m (+f)dz
(7T/a)lzu. -z’l

!
w

———

(fT/a)lzor-z’l

zt(fj(z,t)dz)dz (B9)

with the help of (B5) and (B8). Consequently, d/dta(t ) <0.

Thus, a(t) is a monotonically decreasing function for all

t>2, and certainly so is a., n = 2,3, . . . .

Thus, the correction series G“ is dominated by ~:=za~,

a series of positive monotonically decreasing terms. Since

A+l>n, n=z,s,... (B1O)

then

e–(~/a)lzu,–z’lA e–(~/a)lz.,–+,,+l
an <

A - L+l ‘

ncz,s,...

(Bll)

Consequently
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whence

(B13)

as

The second inequality in (B13) can also be deduced from

Fig. 12. It follows from (B12) that G“ converges exponen-

tially. Furthermore, since

-=;-:’ ~= 2,3,... (B14)

(B15)

which can be proved using similar procedure, and is also

evident from Fig. 12, G“ does converge uniformly for all

(x’, z’).
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Composite Coupler IDesign

THOMAS C. CHOINSKI

Abstract —Unequaf power splitters and combiners are generafly limited

by the line widths which can be practically synthesized in a given transmis-

sion medium. This practicaf limitation on the ratio of uneqnaf power
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Norden Systems, Melville, NY, under intemaf research and development
funding.

The author is with United Technologies, Norden Systems, 75 Maxess
Road, Melville, NY 11747.

dkision can be extended by incorporating the same types of couplers into a

composite design.

The generaf composite design approach outfhted in this paper rises three

couplers (three temlinal couplers) to generate a new three-terminaf circuit.

The design equatfa,ns are derived for the composite approach and sum-

marized in graphic form.

The feasibility of the composite’design approsch is demonstrated by the

construction of a 5.76-dB differential conpler rising intemafly series-

terminated Wilkinson conplers. The circuit was designed, anafyzed via

computer, and finally bnilt and tested. The results from the composite

design are compared to that of a single Wifkhtsmr coupler design.
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