606

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 6, JUNE 1984

Inductive Posts and Diaphragms of
Arbitrary Shape and Number in a
Rectangular Waveguide
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Abstract — Consider a finite number of posts and/or diaphragms located
close to each other in a rectangular wavegunide. These are assumed to be
perfectly conducting, of arbitrary shape, and uniform in the direction
parallel to the narrow side of the waveguide, i.e., of the inductive type. The
solution of the problem involves determining the network describing the
effect of the posts and diaphragms on the waveguide dominant mode. A
moment procedure is devised and applied to a set of test problems. The
simplicity and generality of the procedure, together with its excellent
performance, as indicated by the results obtained, clearly shows that it is a
powerful tool worth using.

I. INTRODUCTION

COMMONLY USED building block in microwave
filter design consists of a configuration of closely
spaced posts or diaphragms in a rectangular waveguide. A
knowledge of the characteristics of such a block is required
before a synthesis procedure can be applied. In particular,
the effect of the block on the dominant waveguide mode
must be accurately described, and, from an engineering
perspective, descriptions employing networks of lumped
clements are preferred. In this paper, the class of inductive
posts is considered, and its network description is being
sought. (To avoid unnecessary writing, posts, hereafter, are
meant to be both of zero thickness, i.e., diaphragms, as well
as of finite thickness.) These posts are assumed to be
perfectly conducting, of arbitrary cross section, and uni-
form in the direction parallel to the narrow side of the
waveguide. The problem considered is depicted in Fig. 1.
The analysis of posts in a waveguide is an important
problem in microwave theory, and a large body of litera-
ture exists on it. However, many of the available solutions
have shortcomings. The number of posts considered is
usually one, and the extension to more than one post is not
easy to obtain. Also, the application of these methods is
largely restricted to specific posts like circular posts,
windows and diaphragms coincident with a waveguide
cross section, etc., or those that may be approximated as
such. An account of some of these methods can be found
in texts [1, ch. 8], [2, chs. 5, 6]. Subsectional moment
methods, on the other hand, provide a means by which
these solutions can be made more general. For example, a
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Fig. 1. p inductive posts in a waveguide.

large class of posts, including the ones described above,
can be handled without difficulty. As a result, a general
computer code which allows a systematic application of the
procedure can be written. It is the purpose of this paper to
demonstrate such a solution.

The moment procedure is quite straightforward. First,
each post is approximated by a finite number of strips,
each of which carries a constant current whose value is to
be determined. The Green’s function for the TE,, to z
modes is then used to express the field produced by these
currents. For an incident TE,, to z mode traveling along
the waveguide axis in either direction, the total tangential
electric field must vanish on each post. Satisfaction of this
condition along a line in the direction of each strip leads to
two systems of equations, one for each excitation, It is
worthy of note that in the two cases the matrix is the same,
whereas the right-hand side vectors are complex con-
jugates. The solution of these equations determines the
current induced on each post for each excitation. The
reflection and transmission coefficients of the waveguide
dominant mode are then evaluated using the induced cur-
rents to set up the scattering matrix of the posts. The
impedance matrix is then determined, and readily realized
by a T-network of lumped elements, using standard micro-
wave network theory.

This paper is organized as follows. The moment proce-
dure is presented in Section II. The evaluation of the
matrix elements is considered in Section III. Section IV
presents some of the results obtained by applying the
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procedure to a few selected problems. Final remarks are
given in the discussion in Section V.,

II. BAsiC FORMULATION

Let P!, P2,---, P? be inductive posts located in a rect-
angular waveguide whose axis is in the z direction. These
posts are assumed to be perfectly conducting, of arbitrary
cross section, and uniform along the y-axis.

Let a TE,; to z mode of unit amplitude be incident on
the posts from the left. The incident electric field has only
a y-component given by

(1)

. m _
Ey’ = sm(—x)e nz
a
where

_ 2T (Z)Z_ 2
Yl ]}\10 7 K- .

2

Here & = 27/\ = wy/pe is the wavenumber of the medium
filling the waveguide, and A is its wavelength. This medium
is assumed linear, homogeneous, isotropic, and dissipation
free, and is therefore characterized by the real scalar per-
meability ¢ and the real scalar permittivity e. Furthermore,
it 1s assumed that a <A <24, so that only the dominant
mode can propagate in the waveguide.

Since each post is uniform along the y-axis, and since
the incident field has only a y-component electric field that
does not vary with y, the field scattered from the posts
must have only a y-component electric field that does not
vary with y. Thus, the only higher order mode excited are
TE,, to z modes, since these are the only modes having
only an E, component that does not vary with y. Conse-
quently, the current induced on each post has only a
y-component that does not vary with y. The scattered field
can be evaluated in terms of these currents by using the
Green’s function for TE,, to z modes [1, sec. 5-6]. (The
problem is basically a two-dimensional scalar one, and it is
assumed, hereafter, that all source and measurement points
are located in some plane y = constant within the wave-
guide.) The scattered field is then given by

b
£j= L [ Ol ) () dr ()

where

. (hT . (nT T
P i e
G(x,z|x’,z’)=— P Z

n=1

Yn
(0O<sx<a) (4)

(5)

na \?
w=y () -

dl’ = (dx’y+(dz")* . (6)
In (3), J* is the current induced on the th post, and the

integral is taken along each boundary C’ of the tth post
cross section, 1 <1< p. Since each post is perfectly con-
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Fig. 2. Each C’,1<1< p, approximated by a polygon =,

ducting, we must have

p
E\+E;=0 on L_chf

=

(7

where U denotes the union of sets. This is an integral
equation for the induced currents.

An exact solution of (7) can rarely be obtained. An
approximate solution can be obtained by replacing each
C,1<t< p, by a polygon X = { S}, S}, - -, S} (see Fig.
2), each segment of which carries a constant current whose
value is to be determined. The integral equation then
becomes

- p g
sin(—x)e‘ylz+ Y ¥ aiuf G(x,z|x’,z") dl’=0,
a S,i

t=1u=1
»
(x,2)elJ = (8)
r=1
In (8), af, is the unknown constant current on the uth

segment of 2, S}, along which the integral is taken, 1< u
< g', 1<t < p. Satisfying (8) at U Z_, M", where

M'= {(xzt;+(1/2)s Zf;+(1/2)) :(

t t t t
xv+1+xv Zv+1+zv)
’

2 ’ 2
1<v<g’} 9

and (x5, Zgey ) = (X1, 21) for any post ¢ of finite thick-
ness, we obtain the system of equations

ZI, =V, (10)
where Z is a p by p block matrix whose rsth block is the
g” by g° matrix

B” =&l = [__/SSG(";HUZ)a Zoraml¥'s Z/) dl’]

(11)
and I, and V, are the p segment vectors whose sth and
rth segments are, respectively, the g° by 1 and g” by 1
vectors

ff = [4th“] (12)
I : T —yz"
W= [¢r1u] = [Sm(;l’xu+(1/2))eull(1/2)]~ (13)

Solution of the system of equations (10) determines the
current induced on each segment.
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This approximate solution is a moment solution with
. pulses used for current expansion and a point-matching
procedure [3, sec. 1-5}. The higher order modes excited are
evanescent, i.e., decay exponentially with distance from the
posts. Thus, at distances sufficiently far from the posts,
only the dominant mode propagates in the waveguide. The
reflection coefficient of the dominant mode I, evaluated
at z =0, can be determined from (4) and (8) as

Y ¥ o, [ sin(Zx)en . (14)
1l u= St a

The transmission coefficient of the dominant mode,
evaluated at z =0, is then given by

— J W 4 gt t H 7, vz’ J1°
T, =1 p t§=:1 uglalufsésm( e )e dar. (15)
The choice of the reference plane L at z=0 is only a
matter of convenience.

In view of the evanescing nature of the higher order
modes, the posts can be described by their effect on the
dominant mode. To do this, let a TE,, to z mode of unit
amplitude be incident on the posts from the right. This
mode has only a y-component electric field, which is now
given by

E}= sin(%x)e’lz. (16)

Let each C’,1<1t< p, be approximated in exactly the
same way as done previously, i.e., by the same polygon
2'={(8},8;, -+, S; ). Each segment is assumed to carry
an unknown constant current o5 ,. Using the Green’s func-
tion G(x, z|x’, z’) to express the scattered field E;, then
point matching Ej + E; to zero at U /_;M’, where M’ s
the point set defined by (10), we obtain the system of
equations

ZI,=7,. a7

Here ? is the p by p block matrix given by (11), and fz
and ¥, are the p segment vectors whose sth and rth
segments are the g° by 1 and g” by 1 vectors

L=la,l (18)
74 : T or z,
vy =[¢5]= [Sln(;le—(l/Z))eYl "*‘1/2’} (19)

respectively. Solution of the system of equations (17) de-
termines the current induced on each segment. The reflec-
tion and transmission coefficients of the dominant mode,
evaluated at z =0, in this case are given by

; r g
Jop t : T z" g1t
=~ ay, sm( X )eYl dl 20

g at, tgl u§1 2 '/;j a ( )

. r g
_ Jwp P . (77 ,) vz’ 11t
T, =1—+—— a sin[ —x"je " dl’. (21

2 aYl tgl ugl 2“'/;; a ( )

The effect of the posts on the dominant mode can then
be described by the scattering matrix [4, sec. 5-14]

rl TZ
=7 2} )
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Fig. 3. A two-port network corresponding to the matrix Zin (27).

For a reciprocal medium, T; and 7, are necessarily equal.
In the Galerkin case with pulses used for both current
expansion and testing, it is easy to show that the moment
matrix Z is symmetric, and T; and 7, are given by

Jol >

T,=1- 22177y

1 ay, v 2

(23)

jWh > 7
T,=1- LRy
=1- 21, (249
where the superscript T denotes vector transpose. Conse-
quently, T; and T, are equal. This need not be the case
when point matching is used to satisfy the boundary condi-
tions. However, the modulus of the difference in transmis-
sion coefficients is small so that an average transmission
coefficient may conveniently be defined. To proceed fur-
ther, define the average transmission coefficient
L+7T,

R (25)

The scattering matrix of the posts then becomes

L=

I‘1 Tav
S_[Y;v 1“2]‘ (26)
The posts impedance matrix is given by /
-1_ %1 212
Z=5o(U+s)U-)"= [ 2] @)

where {,, = jwp /7, is the characteristic impedance of the
TE,, to z mode, and U is the identity matrix. For a lossless
medium and perfectly conducting posts, the elements of Z
are pure imaginary [4, sec. 5-12]. However, due to the
approximations involved in the numerical solution, the
imaginary nature of Z need not be preserved (S need not
be unitary). The real part of Z is of small norm, neverthe-
less, so that it is reasonable to consider only the imaginary
part of Z. The equivalent network corresponding to (27) is
shown in Fig. 3.

I1L

The construction of the moment matrix Z in (10) and
(17), constitutes a large portion of the work involved in the
moment solution. An efficient evaluation of the matrix
elements is therefore necessary for the success of the solu-
tion. A typical element of Z is given by the integral

_ G .\ , r’ ’ ’
-/L;; (xv Zylx z)dl

EVALUATION OF MATRIX ELEMENTS

where

(xul, ZU') = (x;+(1/2)’ le-f—(l/z))'

The first step is to express the dynamic Green’s function
G(x,, zy|x’,z") in terms of the corresponding static
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TABLE I
THE PARAMETERS OF AN EIGHT-POINT GAUSS-RADAU
QUADRATURE RULE
1 2 3 4 5 6 7 8
pi 0.0 0.06412993 | 0.20414991.} 0.39535039 l—p[‘ 1~p3 l-pz l—pl
q. | 0.03571428 | 0.21070422 | 0.34112270 | 0.41245880 | 4 |. 93| 9o 9

Green’s function, whose analytic form is known, plus cor-
rection terms. The integration is then carried out numeri-
cally.

Put

(29)
Then
T T
—G\{(x,,2z,x’,z* ——sm( ,)sin(——x’)
( v’ Ul ) Bl a
e i/l 4 S G (30
T
where
. (nvr ) . (n'n' ,)
o SIN|—x,)sin| —x
G'=Y a g o~ (n/a)zy~2B,
n=2 Bn
= —sin(zxv,) sin(~7Zx’)e‘(”/”)'zv'"z'I - I+ 67,
a a u

(31)
In (31), G*' is the static Green’s function

- 1. (nm . (nw
Y =sin|—x, |sin{ —x
n a a

n=1

Gst( Xyt le Z)_—?,;rﬂ

e~ (nm/@Ne=1 (32)

which can be obtained by setting k equal to zero and
dropping the jw factor in (4), whereas G” is the correction

series
o0
. nw . nw
G"= ) sm(Tx,,,) sm(—;x’)
(e—wa)lzv:—z'w,. e~ (n1/@)|zy 2]

n=72
3 - " ) (33)

The series in (32) is readily summed (see Appendix A) to
give

Tl
#G 2Re log

1— e~ (W/@Ulxy+ ¥ +lz,~2)
1— e~ (W/aUlxy—x1+lz,—2')
(34)

where log is meant to be the natural logarithm. The correc-
tion series G” is dominated by an exponentially conver-
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gent series of positive monotonically decreasing terms (see
Appendix B), and may therefore be summed directly at a
very modest cost. Combining (30), (31), and (34), we obtain

a new form of G
(T,
X, |sin| —x
a

_G( Xy 2 le,z )=;T‘O_I;L;‘Sin(‘g

e~ U/ Dlzy =By

' . K .,
+ Vhed sin ( zxv,) sin ( -—x’) e (7 zy—2z
a a .
1 1= e~ (/DX + X +|z0~27) .
+ —2—Re 1()g +G”1.
1— e~ (/DUlxy—x'|+20—2"D
(35)

The integration is now carried out numerically with G
given by (35). Apart from jwG*, the integration of the
terms composing G causes no difficulty, and any quadra-
ture rule can be used. Thus, each integral is computed as
* N
Tdl’~— Z ‘qiT(xv’5 zv’l(1 - pi)x; + sz;Jrl

s 20
(1= p)zy+ pizi) (36)
where

1= (x5 ey = x5 ) (2801 — 23) (37)

In (36), N is the order of the rule, the g, are its coeffi-
cients, and the p; determine the location of its abscissas. T
stands for any term in (35) except jwG*’. Table I shows the
g; and p, of an eight-point Gauss-Radau rule [5].

For any off-diagonal element of Z, the jwG* term can
be integrated via (36). When evaluatmg the diagonals of
Z, jwG* offers a logarithmic singularity at (x,, z,,) that
requires particular attention. In a very small neighborhood
(xy=8,2,-9,), (x,+8,z,+8,)), 8,8 >0, about

(x,, z,s) the following approximation is valid:

Re [log(l - e“("’/“)(llxv'“X’|+lzuf—z’|))} -

Re [log(g(ﬂxv,— x|+ z,, — z’|)] = log(gp) (38) .

where

p=(x,~x') +

The integral of the singular function jwG** can then be
written as

szwG”dl’=—_2—1fsslog(-z—:p)dl’

(39)

2
’
(ZU'_Z) .

(JwG” + %log(%p)) dl’

s
(2]
S

1 T
St ’
+ ( G +210g —ap))dl. (40)
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The integral on the right-hand side of (40) has no singular-
ity at (x,, z,,), and can be computed using (36).

IV. TESTING THE MOMENT SOLUTION

The solution procedure presented has been translated
into a computer program. To test the moment solution, the
computer program is run for a few selected problems.
Some of these problems are of practical importance, and
have been treated in the literature. In particular, the prob-
lems of the symmetrical thin window, the asymmetrical
thin window, the circular post, and the triple circular post
are considered.

The elements of the scattering matrix and the reactances
of the equivalent T-network are basically the parameters to
be computed. In each case, the resulting equivalent net-
work is compared to that given in the Waveguide Handbook
(WGHB) [6]. The equivalent network of the triple circular
post is tested against measured data. A complete assess-
ment of the performance of the moment procedure should
also consider the (Frobenius) norm of the real part of Z
and the modulus of the difference in transmission coeffi-
cients. These two numbers are computed in all program
runs, and are usually found to be O(107%) or better.
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Fig. 10. Network reactances of a symmetrical triple circular post. (The
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Occasionally, the latter gets to be O(107°). The problems
considered, and some of the obtained results are shown in
Figs. 4-11.

Some general remarks can be drawn from the results
obtained.

In all the cases, the convergence for the inductive reac-
tance X, is monotonic and from above, as can be readily
seen from the set of figures. This can be shown for the
Galerkin procedure, and is true as an approximation for
the present procedure. Thus, the true value of X, can be
considered the greatest lower bound (infimum) of its com-
puted values, and the difference margin is actually less
than that indicated in the figures. The computed reac-
tances, nevertheless, agree well with the WGHB data, with
only a few strips needed to approximate even large posts.

Perhaps the most interesting observation can be drawn
by examining Fig. 8 for the centered circular post. For
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large posts (d/a > 025), X,A,/2af;, is no longer
frequency independent, as is the case with small posts
(d /a < 0.25), but rather branches out. Such a behavior has
been confirmed by Leviatan et al. [7]. Figs. 10-11 for the
symmetrical triple circular post display yet another set of
almost frequency-independent characteristics. This is not
surprising, however, since this configuration cancels out
the first six higher order modes {2, sec. 5-1.3).

V. DISCUSSION

In this paper, a subsectional point-matching moment
procedure has been applied to multiple posts of the induc-
tive type located in a rectangular waveguide. These posts
are metallic, of arbitrary cross section, and uniform in the
direction parallel to the narrow side of the waveguide.

In the procedure, the current induced on each post is
expanded in terms of pulses. Functions other than pulses
could be used, but then the integrals in the moment matrix
would be more complicated. Experience has shown that a
substantial part of the total work involved in the solution is
done in constructing the moment matrix. A pulse represen-
tation of the current, with point matching to satisfy the
boundary conditions, is used so as to render the procedure
economical. However, this has been very successful, as is
evident by the performance of the procedure.

The moment procedure can also be applied, with due
changes, to other classes of posts. For instance, only few
changes are needed so that the procedure may apply to the
dual class of capacitive posts, i.e., posts that are metallic, of
arbitrary cross section, and uniform in the direction paral-
lel to the broad side of the waveguide. The class of dielec-
tric posts in the inductive, or capacitive, position may also
be handled using the moment procedure, but major revi-
sions will have to be made. These cases are currently being
considered.
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APPENDIX A
Consider the static Green’s function

|
1 D18
X |
(@)

o
—
=

e\

+
=
~—
(¢

s
3
&
=
|
N
—_——

n=1
[+ o]
- Z e~ (nm/a)jlx x| ¥z —z I)jl (Al)
n=1
Since
1 & 4
m=ngoﬂ" (n€C,In<1) (A2)

and the series in (A2) is uniformly convergent for 0 < |n} <
|€/ <1, a term-by-term integration can be carried out [8,
sec. 5-4], giving '

¢ 1 v i,
Oi_—ndn*andn

n=0"0
$n+1 00 gn
—log(1-¢) = Z  nl = Z_: P (A3)
n= n=1
Putting ¢ equal to e‘(”/")(”"l"‘"”Zv*z") and

e~ (/AU H X1z =2 in (A3), then using the results in
(A1), the static Green’s function reads

- EGS’(X')” z,|x’, 2°)
— e (#/@) %yt X1 Fzy—2"])
= %Re log | 1=¢ (A4)
1= ¢ (7/@Ulwy—x1+|zy— =)
as asserted.
APPENDIX B
Consider the correction series
: 0
=3 a, sin(ﬂxvl)sin(ﬂx’) (B1)
n=2 a a
where
ef('”/”)lzv'—zllﬁn e_("”/a)[zv'—z’ ¢
a,= - B2
a=T—p ; (B2)
2 2
B, = nz—(%) (1<T"<2). (B3)
Clearly
o0
1G71< X la,l. (B4)
n=2
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Fig. 12. Pictorial illustration of the procedure in the Appendix.

Put
o~ (/DNz =B o= lin/@)lzy =2
a(t)= - (B5)
T z
2a\?

p=\e-(%) @ (0
flz,t)=e PO -2, (B7)

Then
a(t) = f f(z,1) dz. (BS)

(7/a)lz,— 2’|

Since ¢ > B(¢) for all ¢ > 2, then a(¢z)> 0 for all > 2, and

certainly so is a,, n=2,3,: -+
That {a,} is a monotonically decreasing sequence fol-
lows from its positiveness. Since f and 9 /d¢ are continu-

ous for t>2 and for all z > (w/a)|z,, — 2’|, and the in-
tegrals
© )
[ fdz and ( . f)dz
(m/a)|zy— 2’ (n/a)|zy— 2’| !

converge uniformly for all 7 > 2, then [9, sec. 7-5]

d oo 2
4 a(t) = ( 2 f) dz
dt f(w/anzv'—z't o

o0 o0 i
= — zt(/ f(z,0) dz) dz (B9)
(m/a)lz, — 2| z
with the help of (B5) and (B8). Consequently, d /dra(s) < 0.
Thus, a(z) is a monotonically decreasing function for all

t 2 2, and certainly so is a,, n=2,3, -
Thus, the correction serles G” is dommated by X3 ,a,,
a series of positive monotonically decreasing terms. Since

Byi1>n, n=23,--- (B10)
then
e~ T/ DNzy =218y o= (n/@zy 2By
a, < — — , n=203,---
" ﬁn Bn+1
(B11)
Consequently
~(w/a)|z,~2"|B2 —(a/a)zy—2"1BNn 1
<8
Z =< (B12)

- B

BN+1



AUDA AND HARRINGTON: POSTS AND DIAPHRAGMS IN WAVEGUIDE

whence

sl —(m/a)lzy—2z'|B
e
6"< ¥ a,< t—F—

L a, A (B13)

as

e—(”/a)lzv’_

21BN +1
—0as N —o0.
Br+1
The second inequality in (B13) can also be deduced from
Fig. 12. It follows from (B12) that G” converges exponen-
tially. Furthermore, since

angb,,=l.—l, n
n

B,
1G”I< Z a,

=2

=2,3,---  (Bl4)

Zb<—

which can be proved using sumlar procedure, and is also
evident from Fig. 12, G” does converge uniformly for all

(x', z%).

(B15)
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Composite Coupler Design

- THOMAS C. CHOINSKI

Abstract —Unequal power splitters and combiners are generally limited
by the line widths which can be practically synthesized in a given transmis-
sion medium. This practical limitation on the ratio of unequal power
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funding. '
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division can be extended by incorporating the same types of couplers into a
composite design.

The general composite design approach outlined in thls paper uses three
couplers (three terminal couplers) to generate a new three-terminal circuit.
The design equations are derived for the composite approach and sum-
marized in graphic form.

The feasibility of the composite’design approach is demonstrated by the
construction of a 5.76-dB differential coupler using internally series-
terminated Wilkinson couplers. The circuit was designed, analyzed via
computer, and finally built and tested. The results from the composite
design are compared to that of a single Wilkinson coupler design.
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